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INTRODUCTION

Three-fluid heat exchangers are widely used in chemical pro-
cesses and cryogenics. The first study of the countercurrent
parallel flow three-fluid heat exchanger problem (see Fig. 1)
was performed by Morley [1], though the results obtained
were not given in an explicit form. Hausen [2] obtained an
explicit analytical solution of temperature distributions of
the same type of a heat exchanger but only for a coun-
tercurrent flow arrangement. In a number of other efforts,
the same solutions for cocurrent and countercurrent flow
arrangements are repeatedly reinvented [3-7]. The existing
solutions for temperature distributions within the parallel
flow three-fluid heat exchanger are, as a rule, of a very com-
plex algebraic structure and frequently in a dimensional
form. In addition to that, the solutions are usually not
adequately tailored to be used in the same form for all poss-
ible fluid flow arrangements. Furthermore, a convenient ana-
lytical procedure for determining the so called “temperature
cross” phenomenon does not exist in open literature. A tem-
perature cross is defined to exist in an exchanger when the
equalization of fluid temperatures occurs in some position(s)
of the exchanger indicating reverse heat transfer has
occurred, thus not fully utilizing all of the heat transfer
surface.

The present note will address all these questions, and will
provide explicit formulas for determining the temperature
distributions of all three fluids, and in all four possible fluid
flow arrangements of parallel flow three-fluid heat
exchangers. In addition to that, a single analytical expression
is given for determining the temperature cross for any com-
bination of fluids involved, and all fluid flow arrangements
under investigation. The results are particularly convenient
for numerical computation in thermal design of a parallel
flow three-fluid heat exchanger.

MATHEMATICAL MODEL

In the analysis the list of idealization and approximations
is as follows: (i) the three-fluid heat exchanger operates
under steady-state conditions ; (i) heat exchange to the sur-
roundings is neglected ; (iii) specific heats of each fluid are
constant ; (iv) there are no internal thermal sources (or sinks)
in the walls or fluids; (v) perfect transverse mixing occurs in
each flow passage: (vi) only one of the fluids has direct
thermal interactions with the other two (i.e. a three-fluid
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Fig. 1. Schematic of three-fluid heat exchanger.

heat exchanger with two thermal communications); (vii) zero
thermal conduction is assumed in fluids or in walls parallel
to the fluid flow direction ; (viii) heat transfer coefficients are
independent of temperature. time and position ; and (ix) the
heat transfer area is distributed uniformly on each fluid side
(the overall extended-surface temperature effectiveness is
considered uniform and constant).

Four possible different parallel stream arrangements P1-
P4 are identified in Table 1 by using the fluid flow indicator
(see Fig. 1), for inlet side of each of the fluid streams. For
example, in the cocurrent arrangement (P1), all three streams
flow in the same direction. In countercurrent flow arrange-
ments (P2-P4), one of the streams is flowing in direction
opposite to other two.

The set of governing equations can be non-dimen-
stonalized as follows:
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NOMENCLATURE
A heat transfer surface area [m? x axial Cartesian coordinate [m].
Cc* heat capacity rate ratio, defined by
equations (5) Greek symbols
p specific heat at constant pressure a, B,y coefficients in functions ® and ¥, defined in
kg ' K7 Table 2 ,
D,; coefficients in equations (8), defined in & heat exchanger effectiveness
Table 4 non-dimensional coordinate, defined by

L funatinne dafinad in Tahla 2
UACHons, Gfnnea in

i fluid flow indicator, defined in Table |
L flow length of the heat exchanger {m]
L,

rauiv &

g coefficients in eéquations (8), défined in

Table 4

] mass flow rate [kg s~']

NTIU  number of heat transfer units, defined hv
equations (5)

R* overall thermal resistance ratio, defined by
equations (5)

s coefficient in functions E, defined in Table
2 TR w

T temperature {K]

U.;  overall heat transfer coefficient between kth

and jthflwid stream based on the heat
transfer area A [Js~' K~}

equation (4}

functions in the solution given by equations

(6), defined in Table 2

e non-dimensiond! témperature, defined by
equation (4).

S
kth or jth fluid stream (&, j = 1,2, 3)
E=0 até=0
2FHE two-fluid heat exchanger
in at inlet

Superscripts
* at temperature cross
3 cocurrent flow arrangement
= countercurrent flow arrangement

-

* (mcp)ll ) (mcp)1

"), T e,

(Ud)n, A,
NTU— R* = 5
(o) VA, )

The corresponding boundary conditions are given in Table 1.

Analytical results presented in this paper were obtained
by using Laplace transforms technique. Without claborating
in details the analytical pumdure that can be find in any
textbook of advanced ring mathemancs, only the
final form of the solutions wﬂ} e discussed. The set of equa-
tiogs (1)-(3) has been solved along with the corresponding
bagmhry conditions (Table 1). The solutions. have begn
obtained for any one of the four possnble, fiuid flow arrange-
menty with thermally unbalanced streams (see Table 1 and
Fig. 1), The solutions are systematized as follows:

QU =0, ;& () +O; . Fild),

k=123, (6

where the subscript k denotes the ﬂuld flow stream. The
functions ®,(f) and W) are given in Tdble 2. The
coeficignts @ ; . ,and ©, ; _, (the non-dimensionalized tem:
peratures of fluids 2 and 3, collocated at & = 0, see Fig. 1)
are defined in Tabk 3. The non-dimgnsionalized parameters
NTU,C%,,C%,, R* and @, ,, are given by equations (4) and
().
Th¢ fluid flow sign md;cators i and i; (see Table 2) should
ven.in Table 1. Note that i, = + 1 always holds
as adop;edg‘ by the convention. Therefore, this indicator is
not used explicitly in writing e solitions.

The solution obtained fequations (6)] is in a full numerical
accordance with the existing solutions obtained for pure
countercurrent (P2, Table 1), and cocurrent (P1, Table 1)
fiuid flow arrangementts {51 The comparison of this solution
with the solution given in ref. [T} shows identical results for
any of four arrungements. It can be proved thiat the explicit
solution given by equations (6) can be transformed in an
implicit form obtained by Baclic et al. {8} for any of the
four analysed fluid flow arrangements. The validation of the
analytical solution can also be easily verified by reducing it
to those for conventional countercurrent or cocurrent two-
fluid heat exchangers by setting in equation (6) R* = 0 and

Table 1. The fluid flow indicator and non-dimensionalized boundary conditions for parallel stream arrangements

Fluid flow arrangements

Pl P2 P3 P4
k I ¢ 9&.; [ ¢ Ok.; [ ¢ O ; iy 4 O, ;
1 +1 0 0 +1 0 0 +1 0 0 +1 0 0
2 +1 0 1 —1 1 i —1 1 1 +1 0 i
3 +1 0 @ +1 0 O ~1 1 e, -1 1 ;s
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Table 2. Functions ®(¢) and W(¢) in equations (6)
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where e53ue and &5y ‘are the conventional two-fluid heat
exchanger effectiveness for cocurrent dnd countercurrent

In.some sltuatxon& depcndlag on the set of dlmens onless
parameters [see equation. (5)], and boundary conditions
(Table 1), the local equalization of fluid stream temperatures
takes place at certain location(s) within the heat exchanger.
In other words, it means that in such a situation the *“‘tem-
perature cross” between the temperature fields of the central
and/or lateral fluids, respectively, exists. This situation can
be interpreted in the sense that in a heat exchanger | the inver-
sion of the heat tramsfér rate directions occurs. In such a
case, in a heat exchanger:section where the fluid which has
to be.heated has larger local temperatures than the fluid
whick has to be cooled, the corresponding heat transfer areas

the eventual existence of the temperature cross in a heat
exchanger (for design and operation parameters selected) in
order to control the design.

The equalization of, the corresponding local temperature
values of pairs of fluid flow streams appears at the particular
location in a heat ‘exchanger ¢* if 8 « £{* < 1. Using the
solution given by equations (6) one ¢an show, after cum-
bersome but straightforward algebraic manipulation, that £*
takes values accordingto:

I in Dyt ks
"NTU Dki—Lk,"

Parameters D, ; and L, ar¢ given in Table 4. The values of
Oy ;- gtnd O, ., are deﬁned in Tqble 3-(for all four possible
paraliel flow. arr Indices {k,j} denote-the cor-
responding t:mperatwe cross (b LY between the fluid streams
{1,2}, {2,3} and {3, 1}, respectively). It is worth noting that
streams ! and 3 are not mutually in a direct thermal contact
(i.e. the fluid 1 is separated from the fluid 3 by the fluid 2).
The temperature cross expression [equation (8)] is in a given
form valid for all four flow arrangements, and for any of
the possible three-fluid stream combinations. Therefare, this
solution is more convenient than the three expressnons
obtained comparing subsequently the cormpondmg pairs of
temperature distributions [8}:

In Fig: 2 the nature of the temperature distributions in a
three-fluid heat exchanger is demonstrated. The set of rel-

Sty = ®)

Table 3. ©, ;. _, and O; ; _,, equations (6)

Arrangement O, (2
Pi | Oyin
1-0,,;,'¥2(1)
P2 —— O
®,(1)
P V(1) =¥,(1)O;.: 0, — 08 _,®;(1)
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Table 4. Parameters used in equation (8)
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Fig. 2. Temperature distributions in a cocurrent three-fluid heat exchanger (arrangement P1), a coun-
tercurrent three-fluid heat exchanger (arrangement P2). a countercurrent—cocurrent three-fluid heat
exchanger (arrangement P3). and a cocurrent-countercurrent three-fluid heat exchanger (arrangement P4).
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evant parameters is the same, but the flow arrangement is
different in each case. For the cocurrent flow arrangement
(P1) the temperature cross is between fluids 2 and 3. In the
case of the countercurrent flow arrangement the temperature
cross does not exist, while for both countercurrent—cocurrent
(P3) and cocurrent—countercurrent (P4) flow arrangements
temperature crosses (both direct and indirect) exist. In order
to determine the existence of the temperature cross without
analysing the temperature distributions within a heat
exchanger. one can use equation (8). It is worth noting that
the calculation should include double precision.

CONCLUDING REMARK

A compact solution was obtained for the temperature
distribution and temperature cross of a three-fluid heat
exchanger with two thermal communications among the
thermally unbalanced fluid streams. The analysis was con-
ducted for any of four possible fluid flow arrangements.
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1. INTRODUCTION

TRANSPORT processes through porous media is a subject that
has been widely studied in the scientific community during
the last two decades. This interest is justified by the important
role it plays in the industrial sector, particularly in the insu-
lating systems for buildings and heat exchanger devices.
energy storage systems, material processing and geothermal
systems. An excellent review on this subject was recently
provided by Nield and Bejan {1].

Studies of convective heat transfer from an isothermal
sphere embedded in a porous medium are important in many
engineering and geophysical applications such as spherical
storage tanks, packed beds of spherical bodies, solidification
of a magma chamber and others. However, only a little work
has been devoted to this problem in the past. An early paper
by Yamamoto [2] presents an analytical solution for small
Rayleigh numbers. This paper has recently been extended by
Sano and Okihara [3] to the case of an unsteady convective
flow. But boundary-fayer solution (large Rayleigh numbers)
of natural convection about a general axisymmetric heated

body embedded in a porous medium have been presented by
several authors, notably Merkin [4], Nilson [5] and Nakay-
ama and Koyama [6]. In particular, Cheng [7] and Chen and
Chen [8] have treated the case of a sphere. It was shown in
[7] that this problem admits a similarity solution. Further, a
systematic analysis of the problem of natural convection
from an isothermal sphere immersed in a fluid-saturated
porous medium has been presented by Pop and Ingham
[9]. In addition to obtaining a second-order boundary-layer
solution they used a finite-difference scheme to obtain
numerical results for small values of the Rayleigh numbers,
as well.

However, to the authors’ knowledge the conjugation fea-
tures of this problem have never been analysed. It is impor-
tant to mention that conjugate heat transfer problems, in
which the convective heat transfer depends strongly on the
thermal boundary conditions, are important in many heat
transfer equipments because this dependence usually degra-
dates the heat exchanger performance. Hence, the present
problem might have some relevance to understanding of a
charging or discharging process of energy in regenerative



